The quality level of our instruments is the result of a continuous improve of product. This situation can cause possible differences comparing this manual with the instrument you bought. We regret in advance for any possible mistake in this manual. Data, drawings and descriptions included in this manual cannot be juridically in force. We reserve us the right to modify and correct the manual without prior notice.
RTD Thermometer
HD2107.1
HD2107.1

1. Input for probes, 8-pole DIN45326 connector.
2. External auxiliary power supply connector input.
3. Battery symbol: displays the battery charge level.
4. Function indicators
5. Secondary display line.
6. HOLD key/▲: freezes the measurement during normal operation; in the menu, increases the current value.
7. FUNC key: displays the maximum (MAX), the minimum (MIN) and the average (AVG) of current measurements. When pressed together with the UNIT/UserCal key, starts the calibration procedure for the probe connected to the instrument.
8. REL key/▼: enables the relative measurement (displays the difference between the current value and the logged value when the key is pressed); in the menu, decreases the current value.
9. SERIAL key: starts and ends data transfer to the serial communication port.
10. MENU key: allows access to and exit from the menu.
11. ENTER key: in the menu, confirms the current selection.
12. UNIT/USER CAL key: during normal operation, selects the unit of measurement for the temperature between °C, °F or °K; when pressed together with the FUNC key, starts the calibration procedure for the probe connected to the instrument.
13. ON-OFF/AUTO-OFF key: turns the instrument on and off; when pressed together with the HOLD key, disables the automatic turn off.
14. MAX, MIN and AVG symbols.
15. Main display line.
16. Line for symbols and comments.
17. 8-pole MiniDin connector for RS232C and for HD40.1 printer connection using cable HD2110CSNM.
RTD Thermometer
HD2107.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
HD2107.2

1. Input for probes, 8-pole DIN45326 connector.
2. External auxiliary power supply connector input.
3. Battery symbol: displays the battery charge level.
4. Function indicators.
5. Secondary display line.
6. HOLD key/△: freezes the measurement during normal operation; in the menu, increases the current value.
7. FUNC key: displays the maximum (MAX), the minimum (MIN) and the average (AVG) of current measurements. When pressed together with the UNIT/UserCal key, starts the calibration procedure for the probe connected to the instrument.
8. REL key/▽: enables the relative measurement (displays the difference between the current value and the logged value when the key is pressed); in the menu, decreases the current value.
9. SERIAL/ERASE LOG key: starts and ends data transfer to the serial/USB communication port. In the menu, clears the data contained in the instrument's memory.
10. LOG/DUMP LOG key: during normal operation, starts and ends the saving of the data in the internal memory; in the menu, starts the data transfer from the instrument's memory to the PC.
11. MENU key: allows access to and exit from the menu.
12. ENTER key: in the menu, confirms the current selection.
13. UNIT/USER CAL key: during normal operation, selects the unit of measurement for the temperature between °C, °F or °K; when pressed together with the FUNC key, starts the calibration procedure for the probe connected to the instrument.
14. ON-OFF/AUTO-OFF key: turns the instrument on and off; when pressed together with the HOLD key, disables the automatic turn off.
15. MAX, MIN and AVG symbols.
16. Main display line.
17. Line for symbols and comments.
18. 8-pole MiniDin connector for RS232C and for HD40.1 printer connection using cable HD2110CSNM, for USB 2.0 connection using cable HD2101/USB.
The **HD2107.1** and **HD2107.2** are portable instruments with a large LCD display. They measure the temperature using immersion, penetration or air contact probes. The sensor can be a Pt100 3 or 4 wires, Pt1000 or Ni1000 2 wires.

The probes are fitted with automatic detection module, with the factory calibration settings already being memorized inside.

The HD2107.2 instrument is a **datalogger**. It memorizes up to 80,000 samples which can be transferred from the instrument connected to a PC via the multi-standard RS232C serial port and USB 2.0. The logging interval, printing, and baud rate can be configured using the menu.

The HD2107.1 and HD2107.2 models are fitted with an RS232C serial port and can transfer the acquired measurements in real time to a PC or to a portable printer.

The **Max**, **Min** and **Avg** function calculate the maximum, minimum or average values. Other functions include: the relative measurement **REL**, the **HOLD** function, and the automatic turning off that can also be disabled.

The instruments have IP67 protection degree.

This manual describes the **HD2107.1** and **HD2107.2** models: if not otherwise specified, the description is intended to be applicable to both models.
Foreword
The instrument keyboard is composed of single-function keys, like the MENU key, and double-function keys such as the ON-OFF/Auto-OFF key.
In the double-keys, the function in the upper part is the “main function”, while the one in the bottom part is the “secondary function”. When the instrument is in standard measurement mode, the main function is active. In the menu or in conjunction with the FUNC key, the secondary function is enabled.
The pressing of a key is accompanied by a short confirmation beep: a longer beep sounds if the wrong key is pressed.
Each key specific function is described in detail below.

ON-OFF/AUTO-OFF key

The instrument is turned on and off using the ON/OFF key. The turning on enables all display segments for a few seconds, and then the type of calibration enabled (CAL FACT = factory calibration; CAL USER = user calibration). Then an auto-test follows, including detection of the probe connected to the input, and setting the instrument ready for normal measurement.

During turning on, should no probes be connected, the message "NO_PRBE_SER_NUM" is displayed in the line for symbols for a few seconds, and in the main line the ERR message appears.
When the probe is inserted into a functioning instrument, the "NEW_PROB_DET" (New probe detected) message appears: as the probe's data are captured upon turning the instrument on, it is necessary to turn the instrument off and on again.
Replace the probes when the instrument is off.

Automatic turning off

The instrument has an AutoPowerOff function that automatically turns the instrument off after about 8 minutes if no key is pressed during the intervening time. The AutoPowerOff function can be disabled by holding the HOLD key pressed down during the turning on phase: the battery symbol will blink to remind the user that the instrument can only be turned off by pressing the <ON/OFF> key.
The automatic turning off function is disabled when external power is used. On the other hand, it cannot be disabled when the batteries are discharged.
FUNC key

It enables the display and logging of the maximum (MAX), minimum (MIN) and average (AVG) value of the measurements captured by the probe connected to the instrument, updating them with the acquisition of new samples. The acquisition frequency is once a second. The MAX, MIN and AVG measurements remain in the memory until the instrument is on, even after exiting the calculation function. To reset the previous values and restart with a new measurement session, press FUNC until the message “FUNC CLR” appears, then use the arrows to select YES and confirm using ENTER.

Attention: the data captured using the Record function cannot be transferred to the PC.

HOLD key/▲

It increases the current parameter when used in the menu; when used in measurement mode, it freezes the measurement in progress, and upon application of pressure on the key, the message **HOLD** appears in the upper side of the display. To return to the current measurement, press the key again.

Upon turning on the instrument, the **AutoPowerOff** function can be disabled by holding the MENU key down (please see the ON-OFF key description).

UNIT/USER CAL key

During measurement allows selection of the unit of measurement for the input temperature (shown in the central line of the display). By repeatedly pressing the function key, the different units of measurement are displayed in sequence:

1. °C Celsius degrees
2. °F Fahrenheit degrees
3. °K Kelvin degrees

This setting changes the information displayed and the immediate print of data (SERIAL key). The data recorded using the LOG function (HD2107.2) and sent to the printer or PC through the serial port using the SERIAL function (HD2107.1 and HD2107.2), keep the chosen unit of measurement and display it.

UNIT USER CAL + FUNC

Calibration of the probe and selection of the type of calibration

Simultaneous pressure on the UNIT/UserCal and FUNC keys starts the calibration procedure of the temperature probe connected to the instrument. Please see the paragraph dedicated to calibration on page 13.

To select the type of calibration (USER=user or FACT= factory) press the UNIT/UserCal and FUNC keys together, then use the arrows to select the desired item, and confirm using ENTER.
ENTER key

In the menu, the ENTER key confirms the displayed parameter and then goes to the next one.

REL key/ ▼

In measurement mode, it displays the difference between the current value and that measured on pressing the key. The REL message appears on the display; press the key again to return to the current measurement.

When used in the menu, it decreases the current variable value.

MENU Key

The first menu item is accessed by initially pressing on the MENU key; press ENTER to go to the following items. To modify the item displayed, use the arrow keys (▲ and ▼). The current value is confirmed by pressing the ENTER key and the display moves on to the next parameter.

To exit the menu, press the MENU key at any time, to erase the set-up press the FUNC key.

The menu items are listed in this order:

1) Management of memorized data (only HD2107.2): the message “>>>_LOG_DUMP_or-_ERAS” (Transfer data or erase) is scrolled in the comment line.

 The center figure reports the number of free memory pages (FREE). All memory data are permanently erased by pressing SERIAL/EraseLOG. By pressing LOG/DumpLOG, the data transfer of the logged data on the serial port is started: the “BAUD-RATE” must have previously been set to the maximum value (please see the menu items described below and the paragraph "STORING AND TRANSFERRING DATA TO A PERSONAL COMPUTER" on page 24).

2) RTD probe type: the message “RTD_PRBE_TYPE” is scrolled in the comment line. The main line in the center of the display shows the type of probe connected to the instrument. The following probes can be connected to the input:
 - temperature probes Pt100 complete with SICRAM module
 - direct 4 wire Pt100 probes through module TP47
 - direct 3 wire Pt100 probes through module TP47
 - 2 wire Pt1000 probes through module TP47
 - 2 wire Ni1000 probes through module TP47

 Upon turning on the instrument automatically detects the probes fitted with SICRAM module: the Probe Type menu item is configured to AUTO and cannot be modified by the user.

 When turned on, the temperature probes direct 4 wire Pt100, direct 3 wire Pt100, the Pt1000 and the Ni1000 display the message "NO_PRBE_SER_NUM" (no probe serial number).
In this case the probe type must be entered manually. Select Probe type using the MENU key and then select the type of probe used with the arrow keys; confirm using ENTER.

3) **Print and log interval**: sets the interval in seconds between two loggings or data transfers to the serial port. The interval can be set at 0, 1s, 5s, 10s, 15s, 30s, 60s (1min), 120s (2min), 300s (5min), 600s (10min), 900s (15min), 1200s (20min), 1800s (30min) and 3600s (1hour). **If the value 0 is set, SERIAL works on command: the sending of data to the serial port is performed each time the key is pressed**. Recording (LOG) is performed with one second intervals even if the interval is set to 0. With an interval from 1 to 3600s, continuous data transfer is started when the SERIAL key is pressed. To end the recording (LOG) and continuous data transfer operations (SERIAL with an interval greater than 0), press the same key again.

4) **Sleep_Mode_LOG (Automatic turning off during recording) (only HD2107.2)**: this function controls the instrument's automatic turning off during logging, occurring between the capture of a sample and the next one. When the interval is lower than 60 seconds, the instrument will always remain on. With intervals greater than or equal to 60 seconds, it is possible to turn off the instrument between loggings: it will turn on at the moment of sampling and will turn off immediately afterwards, thus increasing the battery life. Using the arrows select **YES** and confirm using ENTER in order to enable the automatic turning off, select **NO** and confirm to disable it and keep the instrument on continuously. Note: even if **Sleep_Mode_LOG=YES** is selected, the instrument does not turn off for less than one minute intervals.

5) **YEAR**: to set the current year. Use the arrows to modify this parameter and confirm using ENTER.

6) **MNTH (month)**: to set the current month. Use the arrows to modify this parameter and confirm using ENTER.

7) **DAY**: to set the current day. Use the arrows to modify this parameter and confirm using ENTER.

8) **HOUR**: to set the current hour. Use the arrows to modify this parameter and confirm using ENTER.

9) **MIN (minutes)**: to set the current minutes. In order to correctly synchronize the minute, it is possible to reset the seconds by pressing the UNIT key. Use the arrows to set the current minute plus one, and as soon as that minute is reached press UNIT: this synchronizes the time to the second. Press ENTER to go onto the next item.

10) **BAUD_RATE**: indicates the frequency used for the serial communication with the PC. Values from 1200 to 38400 baud. Use the arrows to modify this parameter and confirm using ENTER. **The communication between instrument and PC (or serial port printer) only works if the instrument and PC baud rates are the same**. If the USB connection is used this parameter value is automatically set (please see the details on page 24).
LOG/DUMP LOG key - only HD2107.2

In measurement mode, this function starts and stops the logging of a data block to be saved in the instrument's internal memory. The data logging frequency is set in the "Print and log interval" menu parameter. The data logged between a start and subsequent stop represent a block.

When the logging function is on, the LOG indication is displayed, the battery symbol blinks and a beep is issued each time a logging occurs; the battery symbol does not appear when using an external power supply.

To end the logging, press LOG.

The HD2107.2 can turn off during logging between one capture and the next: the function is controlled by the Sleep_Mode_LOG parameter. When the logging interval is less than one minute, the logging instrument remains on; with an interval of at least one minute, it turns off between one capture and the next if the parameter Sleep_Mode_LOG=YES.

>>> Dump LOG - only HD2107.2

When the LOG key is pressed after the MENU key, the transfer of the logged data on the serial port is started.
Please see the paragraph dedicated to data transfer on page 24.

SERIAL key - only HD2107.1

SERIAL/EraseLOG key - only HD2107.2

In measurement mode, this function starts and stops the data transfer to the RS232C serial output. According to the settings entered in the Print and log interval menu item, a single sample can be printed if Print and log interval=0 or a continuous indefinite printing of the measured data can be set up if Print and log interval=1…3600.

The printing operation is accompanied by the display of the RS232 symbol and the blinking of the battery symbol; when using an external power supply the battery symbol does not appear.

Press SERIAL to end the continuous printing.

Before starting the printing with SERIAL, set the baud rate. To do so, select the Baud Rate menu item and select the maximum value equal to 38400 baud by using the arrows. Confirm by pressing ENTER.

The DeltaLog9 software for PC will automatically set the baud rate value during connection. If you are using a different program than DeltaLog9, be sure the baud rate is the same for both the instrument and the PC: the communication will only work in this way.
Erase memory - only HD2107.2

When pressed after the MENU key, the SERIAL key *permanently* erases all the data contained in the instrument's memory.
THE PROBES

The instrument works with temperature probes fitted with the SICRAM module (with a Platinum Pt100 sensor with 100Ω resistance) and with direct 4 wire Pt100, direct 3 wire Pt100, 2 wire Pt1000 and Ni1000 sensors. The excitation current was chosen in order to minimize the sensor self-heating effects. The SICRAM module acts as an interface between the sensor on the probe and the instrument: there is a microprocessor circuit with a permanent memory inside the module that enables the instrument to recognize the type of probe connected and to read its functioning information.

The probes with SICRAM module are automatically detected by the instrument, while the direct probes must be set up in the **Probe type** menu item (please see the description of the menu on page 9).

The probe is detected during turn on, and this cannot be performed when the instrument is already on, therefore if a probe is connected and the instrument is on, it is necessary to turn it off and on.

TEMPERATURE MEASUREMENT

In all versions the temperature sensor is housed at the end of the probe.

The response time for the measurement of the temperature in **air** is greatly reduced if the air is moving. If the air is still, stir the probe. The response times are longer than those for liquid measurements.

The temperature measurement by **immersion** is carried out by inserting the probe in the liquid for at least 60mm; the sensor is housed in the end part of the probe.

In the temperature measurement by **penetration** the probe tip must be inserted to a depth of at least 60mm, the sensor is housed in the end part of the probe. When measuring the temperature on frozen blocks it is convenient to use a mechanical tool to bore a cavity in which to insert the tip probe.

In order to perform a correct **contact** measurement, the measurement surface must be even and smooth, and the probe must be perpendicular to the measurement plane. A contact measurement is hard to perform due to various factors: the operator must be experienced in handling the probe and consider all the factors influencing it.

So as to obtain the correct measurement, the insertion of a drop of oil or heat-conductive paste is useful (do not use water or solvents). This method also improves the response time.

The °C, °F or °K unit of measurement can be chosen for display, printing, and logging using the UNIT/UserCal key.

Calibration of the temperature probe on line with the instrument

To calibrate the probes correctly, a knowledge of and abiding by the physical phenomena on which the measurement is based is fundamental: this is the reason why it is recommended to abide by what is reported below carefully, and only to perform new calibrations if technically proficient and using the suitable equipment.

The probes fitted with SICRAM module are calibrated in the factory and the calibration parameters are recorded in the module. All probes with direct input are checked for conformity with class A tolerance according to norm IEC751 - BS1904 - DIN43760.
The instrument is provided with the FACT (factory) calibration. The user is also able to perform a USER calibration of instrument+probe. The calibration information is saved in the instrument memory and not in the probe. The same correction is applied to any probe connected to the input: it is therefore implied that the USER calibration should only be used with a precise probe: the one used during calibration and no other probe.

To pass from the user to the factory calibration and back, press the UNIT/UserCal and FUNC/ENTER keys together, then use the arrows to select the type of calibration, and confirm using ENTER.

Calibration sequence:
The calibration can be carried out on one or two points that should differ by at least 10°C and be included in the probe functioning range.
Insert the probe into a thermostatic bath, the temperature of which is precisely known from a reading taken on a sample reference thermometer. Wait for the measurement to stabilize.
Press simultaneously the UNIT/UserCal and FUNC keys, using the arrows select the USER calibration, and confirm with UNIT/UserCal.

Use the arrows to select 1 (first calibration point) and confirm with ENTER. The "UP DOWN 1st MEAS" (correct the first point using the arrows ▲/▼) message is scrolled in the comment line. The instrument display shows the measured temperature: use the arrows to correct the indicated value until it coincides with the value measured by the sample reference thermometer.
Confirm by pressing ENTER.

To exit the procedure without performing the second point, select 0 and press ENTER.
To perform the second point, select the point 2 with the arrows and press ENTER.
The "UP DOWN 2nd MEAS" (correct the second point using the arrows ▲/▼) message is scrolled in the comment line.
Move the probe to the second thermostatic bath and wait for the measurement to stabilize. The instrument display shows the measured temperature: use the arrows to correct the indicated value until it coincides with the value measured by the sample reference thermometer.
Confirm by pressing ENTER.

The procedure is now complete.

Instructions to connect the TP47 connector for 4 wire Pt100, Pt1000 and Ni1000 probes
All Delta Ohm probes are provided with a connector. The HD2107.1 and HD2107.2 instruments also work with 4 and 3 wire direct Pt100, Pt1000 and Ni1000 probes manufactured by other producers: for the instrument connection is prescribed the TP47 connector to which the probe's wires should be welded.

The instructions to connect the Platinum or Nickel probe to the module are provided below.
The module is supplied complete with fairlead and gasket for 5mm maximum diameter cables.
Do the following to open the module and connect a probe:
Unscrew the fairlead and extract the gasket, remove the label using a cutter, unscrew the ring on the opposite side as illustrated in the figure:

Open the two module shells: the printed circuit to which the probe must be connected is housed inside. On the left there are the 1…4 points on which the sensor wires must be welded. The JP1…JP4 jumpers are in the center of the board. These must be closed with a tin bead for some type of sensors:

Before welding, pass the probe cable through the fairlead and gasket. Weld the wires as shown in the table:

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Board connection</th>
<th>Jumper to close</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt100 4 wires</td>
<td>Pt100 4 wires</td>
<td>None</td>
</tr>
<tr>
<td>Pt100 3 wires</td>
<td>Pt100 3 wires</td>
<td>JP1</td>
</tr>
<tr>
<td>Pt1000 2 wires</td>
<td>Pt1000 2 wires</td>
<td>JP2</td>
</tr>
</tbody>
</table>
Ensure the welds are clean and perfect. Once the welding operation is complete, close the two shells, insert the gasket in the module, and screw the fairlead and the ring. At the other end of the module, enter the ring with the O-Ring as indicated in the picture.

Make sure the cable is not twisted while you are screwing the fairlead. Now the probe is ready.

Direct connection of 4 wire Pt100 sensors

4 wire Pt100 sensors can be soldered directly to the pins of the flying female connector without making use of the TP47 board. The 4 wires of the Pt100 sensors have to be soldered as indicated in the figure on the left. In order to use this type of probe it is necessary to set up the menu item “Probe Type” as described at page 9. The P100 probe is recognized upon turning on the instrument: connect the probe when the instrument is switched off and then turn it on.
WARNINGS AND OPERATING INSTRUCTIONS

1. Do not expose the probes to gases or liquids that could corrode the material of the sensor or the probe itself. Clean the probe carefully after each measurement.

2. Do not bend the probe connectors or force them upward or downward.

3. Do not bend or force the contacts when inserting the probe connector into the instrument.

4. Do not bend, deform or drop the probes, as this could cause irreparable damage.

5. Always select the most suitable probe for your application.

6. Do not use probes in presence of corrosive gases or liquids. The sensor container is made of AISI 316 stainless steel, while the contact probe container is made from AISI 316 stainless steel plus silver. Avoid contact between the probe surface and any sticky surface or substance that could corrode or damage it.

7. Above 400°C and below –40°C, avoid violent blows or thermal shocks to Platinum temperature probes as this could cause irreparable damage.

8. To obtain reliable temperature measurements, temperature variations that are too rapid must be avoided.

9. Temperature probes for surface measurements (contact probes) must be held perpendicular against the surface. Apply oil or heat-conductive paste between the surface and the probe in order to improve contact and reduce reading time. Whatever you do, do not use water or solvent for this purpose. A contact measurement is always very hard to perform. It has high levels of uncertainty and depends on the ability of the operator.

10. Temperature measurements on non-metal surfaces usually require a great deal of time due to the low heat conductivity of non-metal materials.

11. The sensor is not insulated from its external casing; be very careful not to come into contact with live parts (above 48V). This could be extremely dangerous for the instrument as well as for the operator, who could be electrocuted.

12. Avoid taking measurements in presence of high frequency sources, microwave ovens or large magnetic fields; results may not be very reliable.

13. Clean the probe carefully after use.

14. The instrument is water resistant and IP67, but should not be immersed in water. Protect the connectors from water by closing them well using their caps. The probe connectors must be fitted with sealing gaskets. Should the instrument fall into the water, check for any water infiltration. Gently handle the instrument in such a way as to prevent any water infiltration from the connectors’ side.
The following table lists all error indications and information displayed by the instrument and supplied to the user in different operating situations:

<table>
<thead>
<tr>
<th>Display indications</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERR</td>
<td>This appears if the probe has already been detected by the instrument, but is disconnected. At the same time an intermittent beep is issued.</td>
</tr>
<tr>
<td>PROB COMM LOST</td>
<td>This appears if the probe has already been detected by the instrument, but is disconnected. At the same time an intermittent beep is issued.</td>
</tr>
<tr>
<td>OVER or UNDR</td>
<td>Measurement overflow: indicates that the probe is measuring a value exceeding the measuring range.</td>
</tr>
<tr>
<td>LOG MEM FULL</td>
<td>Memory full; the instrument cannot store further data, the memory space is exhausted.</td>
</tr>
<tr>
<td>NEW PROBE DET</td>
<td>This message appears when a probe is inserted into a functioning instrument. Turn the instrument off and then back on again.</td>
</tr>
<tr>
<td>PROB ERR</td>
<td>A probe with SICRAM module has been inserted when not admissible for that specific instrument.</td>
</tr>
<tr>
<td>SYS ERR #</td>
<td>Instrument management program error. Contact the instrument's supplier and communicate the numeric code # reported by the display.</td>
</tr>
<tr>
<td>CAL LOST</td>
<td>Program error: it appears after turning on for a few seconds. Contact the instrument's supplier.</td>
</tr>
<tr>
<td>BATT TOO LOW CHNG NOW</td>
<td>Indication of insufficient battery charge appearing on turning on. The instrument issues a long beep and turns off. Replace the batteries.</td>
</tr>
</tbody>
</table>
The following table reports the indications provided by the instrument as they appear on the display, together with their description.

<table>
<thead>
<tr>
<th>Display indications</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>>>>> CAL_MODE >>>> KEY_UNIT FOR_NEW_USER_CAL_</td>
<td>calibration mode >>>> press UNIT to start a new user calibration</td>
</tr>
<tr>
<td>>>>> LOG_DUMP or ERAS</td>
<td>transfer or erase data</td>
</tr>
<tr>
<td>>>>> PRBE_TYPE</td>
<td>type of probe connected</td>
</tr>
<tr>
<td>1ST_MEAS UP DOWN</td>
<td>correct the first point using the arrows ▲/▼</td>
</tr>
<tr>
<td>2ND_MEAS UP DOWN</td>
<td>correct the second point using the arrows ▲/▼</td>
</tr>
<tr>
<td>BATT TOO LOW - CHNG NOW</td>
<td>battery discharged - replace it immediately</td>
</tr>
<tr>
<td>BAUDRATE >>>></td>
<td>baud rate value</td>
</tr>
<tr>
<td>CAL FACT</td>
<td>factory calibration</td>
</tr>
<tr>
<td>CAL_USER</td>
<td>user calibration</td>
</tr>
<tr>
<td>COMM STOP</td>
<td>printing complete</td>
</tr>
<tr>
<td>COMM STRT</td>
<td>printing started</td>
</tr>
<tr>
<td>DAY</td>
<td>day</td>
</tr>
<tr>
<td>DUMP_END</td>
<td>data transfer complete</td>
</tr>
<tr>
<td>DUMP_IN_PROG</td>
<td>data transfer in progress</td>
</tr>
<tr>
<td>ERR</td>
<td>error</td>
</tr>
<tr>
<td>FUNC CLR</td>
<td>max, min and average values clearing</td>
</tr>
<tr>
<td>FUNC_CLRD</td>
<td>max, min and average values cleared</td>
</tr>
<tr>
<td>HOUR</td>
<td>hour</td>
</tr>
<tr>
<td>LOG_IN_PROG</td>
<td>logging in progress</td>
</tr>
<tr>
<td>LOG_MEM_FULL</td>
<td>memory full</td>
</tr>
<tr>
<td>LOG_CLRD</td>
<td>memory data cleared</td>
</tr>
<tr>
<td>LOG_STOP</td>
<td>logging complete</td>
</tr>
<tr>
<td>LOG_STRT</td>
<td>logging started</td>
</tr>
<tr>
<td>MIN >>> USE_UNIT_TO_ZERO_SEC
MINTH</td>
<td>minutes >>>> use the UNIT key to reset the seconds</td>
</tr>
<tr>
<td>NEW_PROB_DET</td>
<td>month</td>
</tr>
<tr>
<td>NO_PRBE_SER_NUM</td>
<td>new probe detected</td>
</tr>
<tr>
<td>nonE</td>
<td>no selection</td>
</tr>
<tr>
<td>OVER</td>
<td>maximum limit exceeded</td>
</tr>
<tr>
<td>PLS_EXIT >>> FUNC_RES_FOR_FACT ONLY</td>
<td>please exit using FUNC >>>> function reserved to factory calibration</td>
</tr>
<tr>
<td>PRBE_SER #### ####</td>
<td>serial number #### #### of the connected probe</td>
</tr>
<tr>
<td>PRNT AND LOG INTV</td>
<td>printing and logging intervals</td>
</tr>
<tr>
<td>PRNT INTV</td>
<td>printing interval</td>
</tr>
<tr>
<td>PROB COMM LOST</td>
<td>lost communication with probe</td>
</tr>
<tr>
<td>PROB_ERR</td>
<td>probe error</td>
</tr>
<tr>
<td>SEL_MEAS 1/2</td>
<td>select measurement 1 or 2</td>
</tr>
<tr>
<td>SLP_MODE_LOG</td>
<td>turning off during recording mode</td>
</tr>
<tr>
<td>SYS_ERR #</td>
<td>program error number #</td>
</tr>
<tr>
<td>UNDR</td>
<td>minimum limit exceeded</td>
</tr>
<tr>
<td>YEAR</td>
<td>year</td>
</tr>
</tbody>
</table>
LOW BATTERY WARNING AND BATTERY REPLACEMENT

The battery symbol on the display constantly shows the battery charge status. To the extent that batteries have discharged, the symbol "empties". When the charge decreases still further it starts blinking…

In this case, batteries should be replaced as soon as possible. If you continue to use it, the instrument can no longer ensure correct measurement. The memory data are maintained.

If the battery charge level is insufficient, the following message appears when you turn the instrument on:

BATT TOO LOW
CHNG NOW

The instrument issues a long beep and turns off. In this case, replace the batteries in order to turn the instrument back on.

In order to avoid data loss, the logging session is ended, if the HD2107.2 is logging and battery voltage falls below the minimum operating level.

The battery symbol turns off when the external power supply is connected.

To replace the batteries, switch the instrument off and unscrew the battery cover counter clockwise. After replacing the batteries (4 1.5V alkaline batteries - type AA) screw the cover on clockwise.

After replacing the batteries, the date, time, baud rate, type of probe, printing interval, logging parameters must be set again: in order to simplify the operation, on insertion of the new batteries the instrument turns on automatically and requests these parameters in sequence. To go to the next item press ENTER; to return to measurement mode, press MENU.
MALFUNCTIONING UPON TURNING ON AFTER BATTERY REPLACEMENT

After replacing the batteries, the instrument may not restart correctly; in this case, repeat the operation. After disconnecting the batteries, wait a few minutes in order to allow circuit condensers to discharge completely; then reinsert the batteries.

WARNING ABOUT BATTERY USE

- Batteries should be removed when the instrument is not used for an extended time.
- Flat batteries must be replaced immediately.
- Avoid batteries leaking.
- Always use good quality leakproof alkaline batteries. Sometimes on the market, it is possible to find new batteries with an insufficient charge capacity.

INSTRUMENT STORAGE

Instrument storage conditions:
- Temperature: -25…+65°C.
- Humidity: less than 90%RH without condensation.
- Do not store the instrument in places where:
 - Humidity is high.
 - The instrument may be exposed to direct sunlight.
 - The instrument may be exposed to a source of high temperature.
 - The instrument may be exposed to strong vibrations.
 - The instrument may be exposed to steam, salt or any corrosive gas.

The instrument case is made of ABS plastic and the protections are rubber: do not use any incompatible solvent for cleaning.
The HD2107.1 and HD2107.2 instruments are fitted with an electrically isolated RS-232C serial interface; the HD2107.2 also has an USB 2.0 interface. The HD2107.1 is supplied on request with a serial connection cable with a Sub D 9-pole female connector on one end, and an 8-pole MiniDin on the other end (code **HD2110CSNM**). The HD2107.2 also has an optional cable with USB 2.0 connector on one end and 8-pole MiniDin on the other end for USB connection (code **HD2101/USB**).

The USB connection requires the previous installation of a driver in the instrument software. Install the driver **before connecting the USB cable to the PC** (please see the details on page 26).

The instrument standard serial transmission parameters are:
- Baud rate 38400 baud
- Parity None
- N. bit 8
- Stop bit 1
- Protocol Xon/Xoff

It is possible to change the RS232C serial port baud rate by setting the "Baudrate" parameter in the menu (please see page 10). The possible values are: 38400, 19200, 9600, 4800, 2400, 1200. The other transmission parameters are fixed.

The USB 2.0 connection does not require the setting of parameters.

The instruments are provided with a complete set of commands and data queries to be sent via the PC.

All the commands transferred to the instrument must have the following structure:
XYcr where: **XY** is the command code and **cr** is the Carriage Return (ASCII 0D)

<table>
<thead>
<tr>
<th>Command</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>&</td>
<td>Ping (locks the instrument keyboard for 70 seconds)</td>
</tr>
<tr>
<td>P1</td>
<td>&</td>
<td>Unlocks the instrument keyboard</td>
</tr>
<tr>
<td>S0</td>
<td>23.8</td>
<td>Captured measurements (24 characters)</td>
</tr>
<tr>
<td>G0</td>
<td>Model HD2107 -2</td>
<td>Instrument model</td>
</tr>
<tr>
<td>G1</td>
<td>M=RTD Thermometer</td>
<td>Model description</td>
</tr>
<tr>
<td>G2</td>
<td>SN=12345678</td>
<td>Instrument serial number</td>
</tr>
<tr>
<td>G3</td>
<td>Firm.Ver.=01-00</td>
<td>Firmware version</td>
</tr>
<tr>
<td>G4</td>
<td>Firm.Date=2004/06/15</td>
<td>Firmware date</td>
</tr>
<tr>
<td>G5</td>
<td>cal 0000/00/00 00:00:00</td>
<td>Calibration date and time</td>
</tr>
<tr>
<td>G6</td>
<td>Probe=Scram Pt100</td>
<td>Type of probe connected to input</td>
</tr>
<tr>
<td>G7</td>
<td>Probe SN=11119999</td>
<td>Probe serial number</td>
</tr>
<tr>
<td>G8</td>
<td>Probe cal.=2004/01/12</td>
<td>Probe calibration date</td>
</tr>
<tr>
<td>GB</td>
<td>User ID=0000000000000000</td>
<td>User code (set with T2xxxxxxxxxxxxxxxx)</td>
</tr>
<tr>
<td>GC</td>
<td>Print instrument's heading</td>
<td></td>
</tr>
<tr>
<td>LN</td>
<td>&1999</td>
<td>Number of free pages in the flash memory</td>
</tr>
<tr>
<td>LD</td>
<td>PRINTOUT OF LOG</td>
<td>Print data logged in flash</td>
</tr>
<tr>
<td>LE</td>
<td>&</td>
<td>Erase data in flash memory</td>
</tr>
<tr>
<td>K1</td>
<td>PRINTOUT IMMEDIATE MODE</td>
<td>Immediate printing of data</td>
</tr>
<tr>
<td>K0</td>
<td></td>
<td>Stop printing data</td>
</tr>
<tr>
<td>K4</td>
<td>&</td>
<td>Start logging data</td>
</tr>
<tr>
<td>Command</td>
<td>Response</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>K5</td>
<td>&</td>
<td>Stop logging data</td>
</tr>
<tr>
<td>K7</td>
<td>&</td>
<td>Enable REL function</td>
</tr>
<tr>
<td>K6</td>
<td>&</td>
<td>Disable REL function</td>
</tr>
<tr>
<td>KP</td>
<td>&</td>
<td>Auto-power-off function=ENABLE</td>
</tr>
<tr>
<td>KQ</td>
<td>&</td>
<td>Auto-power-off function=DISABLE</td>
</tr>
<tr>
<td>RA</td>
<td>& #</td>
<td>Reading of LOG/PRINT interval set</td>
</tr>
<tr>
<td>RP</td>
<td>& 600</td>
<td>Battery level (Resolut. 0.01V)</td>
</tr>
<tr>
<td>RUA</td>
<td>U= °C</td>
<td>Channel A unit of measurement</td>
</tr>
<tr>
<td>WA#</td>
<td>&</td>
<td>Setting LOG/PRINT interval. # is a hexadecimal number 0…D that represents the position of the interval in the list 0, 1, 5, 10, …, 3600 seconds.</td>
</tr>
<tr>
<td>WC0</td>
<td>&</td>
<td>Setting SELF off</td>
</tr>
<tr>
<td>WC1</td>
<td>&</td>
<td>Setting SELF on</td>
</tr>
</tbody>
</table>

Command characters are exclusively upper case characters. Once a correct command is entered, the instrument responds with “&”; when any wrong combination of characters is entered, the instrument responds with “?”. The instrument response strings end with the sending of the CR command (Carriage Return). The instrument does not send the LF command (Line Feed). Before sending commands to the instrument via the serial port, locking the keyboard to avoid functioning conflicts is recommended: use the P0 command. When complete, restore the keyboard with the P1 command.
STORING AND TRANSFERRING DATA TO A PERSONAL COMPUTER

The HD2107.1 and HD2107.2 instruments can be connected to a personal computer via an RS232C serial port, and exchange data and information through the DeltaLog9 software running in a Windows operating environment. The HD2107.2 can also use the USB connection. Both models can send in real time input measured values directly to a PC, through the PRINT function; the HD2107.2 can also store the values measured by using the Logging function (LOG key) in its internal memory. If necessary, the data stored in the memory can be transferred to a PC later.

THE LOGGING FUNCTION - ONLY FOR HD2107.2

The Logging function allows the recording up to 80,000 measurements registered by the probe connected to the input. The time interval between two consecutive measurements can be set from 1 second to 1 hour. The logging starts by pressing the LOG key and ends by pressing the same key again: the data memorized in this way form a continuous block of data.

See the description of the menu items on page 9.

If the automatic turning off option between two recordings (menu >> Sleep_Mode_LOG) is enabled, upon pressing the LOG key the instrument logs the first data and turns off. 15 seconds before the next logging instant, it turns on again to capture the new sample, and then turns off.

The data stored in the memory can be transferred to a PC using the DUMP LOG command: MENU >> LOG. During data transfer the display shows the message DUMP; to stop the data transfer press FUNC on the instrument or ESC on the PC.

CLEARING THE MEMORY - ONLY FOR HD2107.2

To clear the memory use the Erase Log function (MENU >> SERIAL). The instrument starts clearing the internal memory; at the end of the operation, it goes back to normal display.

NOTES:

- Data transfer does not cause the memory to be erased; the operation can be repeated as many times as required.
- The logged data remain in memory apart from the battery charge conditions.
- In order to print the data to a parallel interface printer, you must use a parallel-serial adaptor (not supplied).
- **The direct connection between instrument and printer via a USB connector does not work.**
- Some keys are disabled during logging. The following keys work: ON/OFF, HOLD, FUNC (Max-Min-Avg) and SERIAL.
- Pressing the HOLD, REL and FUNC keys has no effect on the logged data if these keys are pressed after starting the recording, otherwise the following is valid.
- The recording started with the display in HOLD mode proceeds normally with the actual measured values (that is, not in “HOLD” mode). Only the display is frozen to the values present when the HOLD key was pressed.
- The same is true for the Max-Min-Avg function.
- If the logging is started when the display is in REL mode, the relative values are logged.
- It is possible to activate both the logging (LOG) and direct transfer (PRINT) functions at the same time.
The PRINT function

The PRINT function sends the measurements taken in real time by the instrument inputs directly to a PC. Print data units of measurements are the same as those used on the display. The function is started by pressing SERIAL. The time interval between two consecutive prints can be set from 1 second to 1 hour (please see the Print and log interval menu item on page 9). If the print interval is equal to 0, by pressing SERIAL the single data is sent to the connected device. If the print interval is higher than 0, the data transfer continues until the operator stops it by pressing SERIAL again.

Connect the HD40.1 printer using cable HD2110CSNM.

NOTES:

- The print out is formatted across 24 columns.
- Some keys are disabled during serial transmission. The following keys work: ON/OFF, HOLD, FUNC (Max-Min-Avg) and LOG.
- Pressing the HOLD, REL and FUNC keys has no effect on the printed data if these keys are pressed after starting the printing, otherwise the following is valid.
- The transfer started with the display in HOLD mode proceeds normally with the actual measured values (that is, not in “HOLD” mode). Only the display is frozen to the values present when the HOLD key was pressed.
- The same is true for the Max-Min-Avg function.
- If the serial transfer is started when the display is in REL mode, the relative values are transferred.
- It is possible to activate both the logging (LOG) and direct transfer (PRINT) functions at the same time.
CONNECTION TO A PC

HD2107.1 connection to the PC with the cable code HD2110CSNM: sub D 9-pole female connector on one end – 8-pole MiniDin on the other end.
HD2107.2 connection to the PC with the cable code HD2101/USB: USB type A connector on one end – 8-pole MiniDin on the other end.

The instruments are supplied with the DeltaLog9 software that manages the connection, data transfer, graphic presentation, and printing operations of the captured or logged measurements.

The DeltaLog9 software is complete with "On-line Help" (also in PDF format) describing its characteristics and functions.

The instruments are compatible with the HyperTerminal communication program supplied with the Windows operating systems (from Windows 98 to Windows XP).

CONNECTION TO THE RS232C SERIAL PORT

1. The measurement instrument must be switched off.
2. Using the Delta Ohm HD2110CSNM cable, connect the measurement instrument to the first free serial port (COM) of the PC.
3. Turn on the instrument and set the baud rate to 38400 (MENU >> ENTER until the Baud Rate parameter >> select 38400 using the arrows >> confirm with ENTER). The parameter remains in the memory until replacement of the batteries.
4. Launch the DeltaLog9 application and press CONNECT. Wait for the connection to occur and follow the indications on the screen. For a description of the DeltaLog9 application, please refer to its on-line Help.

CONNECTION TO THE USB 2.0 PORT - ONLY FOR HD2107.2

The USB connection requires the installation of the drivers. They are contained in the DeltaLog9 CD-Rom.

Proceed as follows:

1. Do not connect the instrument to the USB port as long as it’s not required.
2. Insert the DeltaLog9 CD-Rom and select the "Install/Remove USB driver" item.
3. The application checks the presence of the drivers on the PC: the installation starts if they are not present; if they are already installed, the drivers are removed by pressing the key.
4. The installation wizard prompts the software user license: to proceed, the software usage terms must be accepted by clicking on YES.
5. On the next page the folder where the drivers will be installed is indicated: confirm without modifying.
6. Complete the installation by clicking on Finish. Wait few seconds until the DeltaLog9 page appears.
8. Connect the instrument to the PC USB port. When Windows detects the new device, the "Guided installation of new software" is activated.
9. If the authorisation to search for an updated driver is requested, select NO and proceed.

10. On installation window, select the item “Install from a specific list or way”.

11. On next window select the options “Search the best driver available in these ways” and “Include the following way during the search”.

12. Indicate the installation folder supplied to the point 5 by Browse command:

 C:\Program Files\Texas Instruments\USB-Serial Adapter

 Confirm with OK.

13. Select “Continue” if the message that software hasn’t got through the Windows Logo test.

14. USB drivers are installed: then select “End”.

15. **The installation wizard requests the files location once more**: repeat the above mentioned steps and provide the location of the same folder (see point 12).

16. **Wait**: the operation could take a few minutes.

17. The installation procedure is now complete: the device will be detected on each new connection automatically.

In order to check if the entire operation was successful, in CONTROL PANEL double click on SYSTEM. Select "Device Manager" and connect the instrument to the USB port. The items:

- "UMP Devices >> UMP3410 Unitary driver" and "Ports (COM and LPT) >> UMP3410 Serial Port (COM#)" for Windows 98 and Windows Me,
- “Multiport serial boards >> TUSB3410 Device” and “Ports (COM and LPT) >> USB-Serai Port (COM#)” for Windows 2000, NT and Xp

should appear.

When the USB cable is disconnected, these two items disappear and come back when it is connected again.

Attention:

1. If the instrument is connected to the USB port **before** installing the drivers, Windows detects the presence of an unknown device: in this case, cancel the operation and repeat the procedure illustrated at the beginning of this section.

2. The documentation supplied with the CDRom DeltaLog9 includes a detailed version of this chapter complete with images. Besides there are also the instructions useful to remove the USB drivers.
NOTES ABOUT WORKING AND OPERATIVE SAFETY

Authorized use

The technical specifications as given in chapter TECHNICAL CHARACTERISTICS must be observed. Only the operation and running of the measuring instrument according to the instructions given in this operating manual is authorized. Any other use is considered unauthorized.

General safety instructions

This measuring system is constructed and tested in compliance with the EN 61010-1 safety regulations for electronic measuring instruments. It left the factory in a safe and secure technical condition.

The smooth functioning and operational safety of the measuring system can only be guaranteed if the generally applicable safety measures and the specific safety instructions in this operating manual are followed during operation.

The smooth functioning and operational safety of the instrument can only be guaranteed under the environmental and electrical operating conditions that are in specified in chapter TECHNICAL CHARACTERISTICS.

Do not use or store the product in places such as listed below:

- Rapid changes in ambient temperature which may cause condensation.
- Corrosive or inflammable gases.
- Direct vibration or shock to the instrument.
- Excessive induction noise, static electricity, magnetic fields or noise.

If the measuring system was transported from a cold environment to a warm environment, the formation of condensate can impair the functioning of the measuring system. In this event, wait until the temperature of the measuring system reaches room temperature before putting the measuring system back into operation.

Obligations of the purchaser

The purchaser of this measuring system must ensure that the following laws and guidelines are observed when using dangerous substances:

- EEC directives for protective labour legislation
- National protective labour legislation
- Safety regulations
Instrum**ent**

- **Dimensions (Length x Width x Height)**: 185x90x40mm
- **Weight**: 470g (complete with batteries)
- **Materials**: ABS, rubber
- **Display**: 2x4½ digits plus symbols
- **Visible area**: 52x42mm

Operating conditions

- **Working temperature**: -5…50°C
- **Storing temperature**: -25…65°C
- **Working relative humidity**: 0…90%RH without condensation

Protection degree: IP67

Power

- **Batteries**: 4 1.5V type AA batteries
- **Autonomy**: 200 hours with 1800mAh alkaline batteries
- **Power absorbed with instrument off**: 20μA
- **Mains (cod. SWD10)**: Output mains adapter 100-240Vac/12Vdc-1A

Measuring units

°C - °F - °K

Security of memorized data

Unlimited, independently of battery charge conditions

Time

- **Date and time**: Schedule in real time
- **Precision**: 1min/month max departure

Measured values storage - model HD2107.2

- **Type**: 2000 pages of 40 samples each
- **Quantity**: Total of 80000 samples
- **Selectable storage interval**: 1s, 5s, 10s, 15s, 30s, 1min, 2min, 5min, 10min, 15min, 20min, 30min and 1hour

Serial interface RS232C

- **Type**: RS232C electrically isolated
- **Baud rate**: Can be set from 1200 to 38400 baud
- **Data bit**: 8
- **Parity**: None
- **Stop bit**: 1
- **Flow Control**: Xon/Xoff
- **Serial cable length**: Max 15m
- **Selectable print interval**: Immediate or 1s, 5s, 10s, 15s, 30s, 1min, 2min, 5min, 10min, 15min, 20min, 30min and 1hour
USB interface - model HD2107.2

Type
1.1 - 2.0 electrically isolated

Connections
- Input module for the probes: 8-pole male DIN45326 connector
- Serial interface and USB: 8-pole MiniDin connector
- Mains adapter: 2-pole connector (positive at centre)

Measurement of temperature by instrument
- Pt100 measurement range: -200…+650°C
- Pt1000 measurement range: -200…+650°C
- Ni1000 measurement range: -50…+250°C
- Resolution: 0.01°C in the range ±199.99°C, 0.1°C in the remaining field
- Accuracy: ±0.01°C
- Drift after 1 year: 0.1°C/year

EMC standard regulations
- Security: EN61000-4-2, EN61010-1 level 3
- Electrostatic discharge: EN61000-4-2 level 3
- Electric fast transients: EN61000-4-4 level 3,
 EN61000-4-5 level 3
- Voltage variations: EN61000-4-11
- Electromagnetic interference susceptibility: EN61000-4-3
- Electromagnetic interference emission: EN55020 class B

PROBES AND MODULES TECHNICAL DATA EQUIPPED WITH INSTRUMENT

Temperature probes Pt100 sensor using sicram module

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Application range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP472I</td>
<td>Immersion</td>
<td>-196°C…+500°C</td>
<td>±0.25°C (-196°C…+350°C), ±0.4°C (+350°C…+500°C)</td>
</tr>
<tr>
<td>TP472I.0</td>
<td>Immersion</td>
<td>-50°C…+400°C</td>
<td>±0.25°C (-50°C…+350°C), ±0.4°C (+350°C…+400°C)</td>
</tr>
<tr>
<td>TP473P.0</td>
<td>Penetration</td>
<td>-50°C…+400°C</td>
<td>±0.25°C (-50°C…+350°C), ±0.4°C (+350°C…+400°C)</td>
</tr>
<tr>
<td>TP474C.0</td>
<td>Contact</td>
<td>-50°C…+400°C</td>
<td>±0.3°C (-50°C…+350°C), ±0.4°C (+350°C…+400°C)</td>
</tr>
<tr>
<td>TP475A.0</td>
<td>Air</td>
<td>-50°C…+250°C</td>
<td>±0.3°C (-50°C…+250°C)</td>
</tr>
<tr>
<td>TP472I.5</td>
<td>Immersion</td>
<td>-50°C…+400°C</td>
<td>±0.25°C (-50°C…+350°C), ±0.4°C (+350°C…+400°C)</td>
</tr>
<tr>
<td>TP472I.10</td>
<td>Immersion</td>
<td>-50°C…+400°C</td>
<td>±0.25°C (-50°C…+350°C), ±0.4°C (+350°C…+400°C)</td>
</tr>
<tr>
<td>Model</td>
<td>Type</td>
<td>Application range</td>
<td>Accuracy</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| TP49A | Immersion | -70°C…+400°C | ±0.25°C (-50°C…+350°C)
| | | | ±0.4°C (+350°C…+400°C) |
| TP49AC | Contact | -70°C…+400°C | ±0.25°C (-50°C…+350°C)
| | | | ±0.4°C (+350°C…+400°C) |
| TP49AP | Penetration | -70°C…+400°C | ±0.25°C (-50°C…+350°C)
| | | | ±0.4°C (+350°C…+400°C) |
| TP875 | Globe thermometer Ø| -10°C…+100°C | ±0.25°C |

Common characteristics

- **Resolution**: 0.01°C in the range ±199.99°C
 0.1°C in the remaining field

- **Temperature drift @ 20°C**: 0.003%/°C

PROBES Pt100 4 WIRES AND Pt1000 2 WIRES

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Application range</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP47.100</td>
<td>Pt100 4 wires</td>
<td>-50…+400°C</td>
<td>Class A</td>
</tr>
<tr>
<td>TP47.1000</td>
<td>Pt1000 2 wires</td>
<td>-50…+400°C</td>
<td>Class A</td>
</tr>
</tbody>
</table>

Common characteristics

- **Resolution**: 0.01°C in the range ±199.99°C
 0.1°C in the remaining field

- **Temperature drift @ 20°C**:
 Pt100: 0.003%/°C
 Pt1000: 0.005%/°C
HD2107.1 The kit is composed of the instrument HD2107.1, 4 1.5V alkaline batteries, operating manual, case and DeltaLog9 software. **The probes and the cables must be ordered separately.**

HD2107.2 The kit is composed of the HD2107.2 datalogger, 4 1.5V alkaline batteries, operating manual, case and DeltaLog9 software. **The probes and the cables must be ordered separately.**

HD2110CSNM 8-pole connection cable MiniDin - Sub D 9-pole female for RS232C.

HD2101/USB Connection cable USB 2.0 connector type A - 8-pole MiniDin.

DeltaLog9 Software for download and management of the data on PC using Windows 98 to XP operating systems.

SWD10 Stabilized power supply at 100-240Vac/12Vdc-1A mains voltage.

HD40.1 The kit includes: 24-column portable thermal printer, serial interface, 57mm paper width, four NiMH 1.2V rechargeable batteries, SWD10 power supply, instruction manual, 5 thermal paper rolls.

BAT.40 Spare battery pack for HD40.1 printer with in-built temperature sensor.

RCT The kit includes 4 thermal paper rolls 57mm wide and 32mm in diameter.

Probes complete with SICRAM module

TP472I Immersion probe, sensor Pt100. Stem Ø 3 mm, length 300 mm. Cable length 2 metres.

TP472L.0 Immersion probe, sensor Pt100. Stem Ø 3 mm, length 230 mm. Cable length 2 metres.

TP473P.0 Penetration probe, sensor Pt100. Stem Ø 4mm, length 150 mm. Cable length 2 metres.

TP474C.0 Contact probe, sensor Pt100. Stem Ø 4mm, length 230mm, contact surface Ø 5mm. Cable length 2 metres.

TP475A.0 Air probe, sensor Pt100. Stem Ø 4mm, length 230mm. Cable length 2 metres.

TP472L.5 Immersion probe, sensor Pt100. Stem Ø 6mm, length 500 mm. Cable length 2 metres.

TP472L.10 Immersion probe, sensor Pt100. Stem Ø 6mm, length 1,000mm. Cable length 2 metres.

TP49A Immersion probe, sensor Pt100. Stem Ø 2.7 mm, length 150 mm. Cable length 2 metres. Handle made of Aluminium.

TP49AC Contact probe, sensor Pt100. Stem Ø 4 mm, length 150 mm. Cable length 2 metres. Handle made of Aluminium.

TP49AP Penetration probe, sensor Pt100. Stem Ø 2.7 mm, length 150 mm. Cable length 2 metres. Handle made of Aluminium.
TP875 Globe thermometer Ø 150 mm with handle, complete with SICRAM module. Cable length 2 metres.

Temperature probes without SICRAM module

TP47.100 Immersion probe, sensor Pt100 direct 4 wires. Probe's stem Ø 3mm, length 230mm. Connection cable 4 wires with connector, length 2 metres.

TP47.1000 Immersion probe, sensor Pt1000. Probe's stem Ø 3mm, length 230mm. Connection cable 2 wires with connector, length 2 metres.

TP47 Only connector for probe connection: Pt100 direct 3 and 4 wires, Pt1000 and Ni1000 2 wires (the connection instructions are outlined on page 14).
CONTENTS

INTRODUCTION .. 6

KEYBOARD AND MENU DESCRIPTION.. 7

THE PROBES... 13

TEMPERATURE MEASUREMENT ... 13
Calibration of the temperature probe on line with the instrument ... 13
Instructions to connect the TP47 connector for 4 wire Pt100, Pt1000 and Ni1000 probes ... 14
Direct connection of 4 wire Pt100 sensors ... 16

WARNINGS AND OPERATING INSTRUCTIONS.. 17

INSTRUMENT SIGNALS AND FAULTS .. 18

LOW BATTERY WARNING AND BATTERY REPLACEMENT ... 20

INSTRUMENT STORAGE... 21

SERIAL INTERFACE AND USB.. 22

STORING AND TRANSFERRING DATA TO A PERSONAL COMPUTER.. 24

THE LOGGING FUNCTION - ONLY FOR HD2107.2 ... 24
CLEARING THE MEMORY - ONLY FOR HD2107.2 ... 24
THE PRINT FUNCTION ... 25

CONNECTION TO A PC.. 26

CONNECTION TO THE RS232C SERIAL PORT .. 26
CONNECTION TO THE USB 2.0 PORT - ONLY FOR HD2107.2 ... 26

NOTES ABOUT WORKING AND OPERATIVE SAFETY ... 28

INSTRUMENT TECHNICAL CHARACTERISTICS .. 29

PROBES AND MODULES TECHNICAL DATA EQUIPPED WITH INSTRUMENT .. 30
TEMPERATURE PROBES Pt100 SENSOR USING SICRAM MODULE ... 30
Probes Pt100 4 wires and Pt1000 2 wires ... 31

ORDER CODES ... 32

- 34 -
CERTIFICATO DI CONFORMITÀ DEL COSTRUTTORE
MANUFACTURER’S CERTIFICATE OF CONFORMITY
rilasciato da
issued by
DELTA OHM SRL STRUMENTI DI MISURA

DATA
DATE
2009/01/12

Si certifica che gli strumenti sotto riportati hanno superato positivamente tutti i test di produzione e sono conformi alle specifiche, valide alla data del test, riportate nella documentazione tecnica.

We certify that below mentioned instruments have been tested and passed all production tests, confirming compliance with the manufacturer’s published specification at the date of the test.

La riferibilità delle misure ai campioni internazionali e nazionali delle unità del SIT è garantita da una catena di riferibilità ininterrotta che ha origine dalla taratura dei campioni di laboratorio presso l’Istituto Primario Nazionale di Ricerca Metrologica.

The traceability of measures assigned to international and national reference samples of SIT units is guaranteed by a uninterrupted reference chain which source is the calibration of laboratories samples at the Primary National Metrological Research Institute.

Tipo Prodotto: Termometro RTD
Product Type: RTD Thermometer

Nome Prodotto: HD2107.1 - HD2107.2
Product Name: HD2107.1 - HD2107.2

Responsabile Qualità
Head of Quality

DELTA OHM SRL
35030 Caselle di Selvazzano (PD) Italy
Via Marconi, 5
Tel. +39.0498977150 r.a. - Telefax +39.049635596
Cod. Fisc./P.Iva IT03363960281 - N.Mecc. PD044279
GUARANTEE

GUARANTEE CONDITIONS

All DELTA OHM instruments have been subjected to strict tests and are guaranteed for 24 months from date of purchase. DELTA OHM will repair or replace free of charge any parts which it considers to be inefficient within the guarantee period. Complete replacement is excluded and no request of damages are recognized. The guarantee does not include accidental breakages due to transport, neglect, incorrect use, incorrect connection to voltage different from the contemplated for the instrument. Furthermore the guarantee is not valid if the instrument has been repaired or tampered by unauthorized third parties. The instrument has to be sent to the retailer without transport charge. For all disputes the competent court is the Court of Padua.

The electric and electronic devices with the following symbol cannot be disposed in the public dumps. According to the Directive UE 2002/96/EC, the European users of electric and electronic devices are allowed to give back to the Distributor or Manufacturer the used device at the time of purchasing a new one. The illegal disposing of electric and electronic devices is punished by a pecuniary administrative penalty.

This guarantee must be sent together with the instrument to our service centre.
N.B.: Guarantee is valid only if coupon has been correctly filled in all details.

Instrument type HD2107.1 HD2107.2

Serial number

RENEWALS

Date Date

Inspector Inspector

Date Date

Inspector Inspector

Date Date

Inspector

CE CONFORMITY

<table>
<thead>
<tr>
<th>Description</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>EN61000-4-2, EN61010-1 LEVEL 3</td>
</tr>
<tr>
<td>Electrostatic discharge</td>
<td>EN61000-4-2 LEVEL 3</td>
</tr>
<tr>
<td>Electric fast transients</td>
<td>EN61000-4-4 LEVEL 3</td>
</tr>
<tr>
<td>Voltage variations</td>
<td>EN61000-4-11</td>
</tr>
<tr>
<td>Electromagnetic interference susceptibility</td>
<td>IEC1000-4-3</td>
</tr>
<tr>
<td>Electromagnetic interference emission</td>
<td>EN55020 class B</td>
</tr>
</tbody>
</table>